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Motivation

Nearest Neighbor Search is everywhere
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Existing Solutions

ANN Benchmark
Facebook FAISS
Facebook Pytorch3D’s KNN

Pytorch3D is Faster = i

. = 6000
Still too slow =
Brute force = 2000
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http://ann-benchmarks.com/
https://github.com/facebookresearch/faiss
https://pytorch3d.org/

Possible Solutions

Spatial Partitioning to speed up?
KD-Tree, Octree, Uniform Grid etc.

GPU Characteristics I

Thread Divergence is

Coalesced Read

Limited Shared Memory
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Fixed Radius NN vs KNN

Fixed Radius NN

+ Lower thread divergence

+ More invariant to point density change

+ Easier to implement

- Need to specify the search radius

- Need to deal with the case of few neighbors

fe)\ ETHzurich



Achievements

Fixed Radius NN Search vs Pytorch3D’s KNN
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172974 points 543652 points 437645 points 100000 points
~16x speed up ~12x speed up ~15x speed up ~30x speed up
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Algorithm Walkthrough

Reference Points
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Algorithm Walkthrough

Reference Points
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~ Algorithm Walkthrough
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Reference Points
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Algorithm Walkthrough

Query Points
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~ Algorithm Walkthrough

» Query Points
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Algorithm Walkthrough
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Algorithm Walkthrough

Spatially sort the reference points
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Algorithm Walkthrough

Spatially sort the reference points
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Algorithm Walkthrough

Spatially sort the reference points
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Algorithm Walkthrough

Spatially sort the reference points
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Algorithm Walkthrough

Spatially sort the reference points
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Radix Sort [Green 2008]; Counting Sort [Hoetzlein 2014] (b
3 ~ 7x speedup compared to Pytorch3D’s KNN
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Algorithm Walkthrough
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Algorithm Walkthrough

Each thread takes a query point
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Algorithm Walkthrough

Each thread takes a query point
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Algorithm Walkthrough

Each thread takes a query point
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Algorithm Walkthrough

Each thread takes a query point
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Algorithm Walkthrough

Each thread takes a query point
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Algoritjm Wilkthrough -

» Each thread takes a query point
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» Each thread takes a query point
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Algoritjm Wilkthrough -

» Each thread takes a query point
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Overall Performance

At least an order of magnitude speedup

H Series1 M Series2
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Overiiad ILreakdown
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» Grid construction and sorting are cheap

mSeries1 ®Series2 mSeries3
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Sorting Query Points

Sorting query points is important

m Series1 M Series2
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How to Choose Grid Size

Let search radius be the multiple of grid size
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Impact of batch size N

Runtime grows linear with N
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Impact of neighbors K

Code optimized for small K
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Next Steps

Support any dimensions

E.g. faster graph construction in dynamic
graph CNN

(Approximate) KNN with uniform grid
Setting proper search radius is not trivial
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Summary

Fixed Radius Nearest Neighbor Search

Fast, General, Easy to use

Publicly available at
https://github.com/Ixxue/FRNN
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https://github.com/lxxue/FRNN

Thank You
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