Accelerating Nearest Neighbor Search
on CUDA for Learning Point Clouds

Lixin Xue
Supervised by

Yifan Wang, Prof. Cengiz Oztireli, Prof. Olga Sorkine-Hornung
[e]\ ETH

Eidgendssische Technische Hochschule Ziirich
EEEEEEEEEEEEEEEEEEEEEE Swiss Federal Institute of Technology Zurich

Motivation

Nearest Neighbor Search is everywhere

0.90

KNN Classifier Image Retrieval Photon Mapping

|gL October 20, 2020 Lixin Xue #o2 ETH-urich

Existing Solutions

ANN Benchmark
Facebook FAISS
Facebook Pytorch3D’s KNN

Pytorch3D is Faster = i

. = 6000
Still too slow =
Brute force = 2000

t

Me

ETH:zurich

http://ann-benchmarks.com/
https://github.com/facebookresearch/faiss
https://pytorch3d.org/

Possible Solutions

Spatial Partitioning to speed up?
KD-Tree, Octree, Uniform Grid etc.

GPU Characteristics I

Thread Divergence is

Coalesced Read

Limited Shared Memory

fe)\

ETH:zurich

Fixed Radius NN vs KNN

Fixed Radius NN

+ Lower thread divergence

+ More invariant to point density change

+ Easier to implement

- Need to specify the search radius

- Need to deal with the case of few neighbors

fe)\ ETHzurich

Achievements

Fixed Radius NN Search vs Pytorch3D’s KNN

* ,
W B =t

Pl

v - SO
’L ! e } /‘/f : R ; «

3 o Vg :
8 % o Piis
‘ | - ".‘ »'

- -— *% 4
- X ‘..l
2

172974 points 543652 points 437645 points 100000 points
~16x speed up ~12x speed up ~15x speed up ~30x speed up

|gL October 20, 2020 Lixin Xue # 7 ETHz(irich

Algorithm Walkthrough

Reference Points

0000000000 . 0" °
®

% ©° o
©

|qL October 20, 2020 Lixin Xue # 8 ETH-urich

Algorithm Walkthrough

Reference Points

0000000000 © o
e 09
Query Points P)
o O
© 0 6 0 O o ° oo
o ©
o

|gL October 20, 2020 Lixin Xue # 8 ETHz(irich

Algorithm Walkthrough

Reference Points

1 2 @ |3
0000000000 ©)
0 09
Query Points 4 5 © 6
o ©O
© 0 6 0 O o © oo
: 7 8 9
Uniform Grids o ©
(b
Lixin Xue # 8 mZurICh

|qL October 20, 2020

~ Algorithm Walkthrough

—

Reference Points

000006006000

Query Points
© 0 6 606 06

Uniform Grids

October 20, 2020

Lixin Xue

1 2 3
"o
o Op¢
4 5 @ 6
(5}
@ © 00
7 8 9
(4]
(b
ETHzurich

Algorithm Walkthrough

Query Points
(o

9 ETHzurich

|gL October 20, 2020 Lixin Xue

Algorithm Walkthrough

Query Points
1 3
° (3
(4

2
4 5 O 6

9 ETHzurich

|gL October 20, 2020 Lixin Xue

~ Algorithm Walkthrough

» Query Points

gl

_ =

October 20, 2020

ETH:zurich

~ Algorithm Walkthrough

_ =

» Query Points

gl

October 20, 2020

3
©

6

0

9

ETH:zurich

Algorithm Walkthrough

|qL October 20, 2020 Lixin Xue # 10 ETH-urich

Algorithm Walkthrough

Spatially sort the reference points

|gL October 20, 2020 Lixin Xue # 10 ETH-urich

Algorithm Walkthrough

Spatially sort the reference points

00000000600

|qL October 20, 2020 Lixin Xue # 10 ETH-urich

Algorithm Walkthrough

Spatially sort the reference points

1 2 @ 3
00000000600 ®
o Q¢
More coherent reads! 4 5 \@ 6
o ©O o)
7 0
7 8 9
o ©

|qL October 20, 2020 Lixin Xue # 10 ETH-urich

Algorithm Walkthrough

Spatially sort the reference points

00000000600

More coherent reads! 4

6660000000 "0’

|gL October 20, 2020 Lixin Xue # 10 ETH-urich

Algorithm Walkthrough

Spatially sort the reference points

2
00000006000
0o @
5

More coherent reads! 4

6660000000 "0’

Radix Sort [Green 2008]; Counting Sort [Hoetzlein 2014] (b
3 ~ 7x speedup compared to Pytorch3D’s KNN
Lixin Xue # 10 mZurICh

|qL October 20, 2020

Algorithm Walkthrough

|qL October 20, 2020 Lixin Xue # 11 ETHz(irich

Algorithm Walkthrough

Each thread takes a query point

11 ETHzurich

|gL October 20, 2020 Lixin Xue

Algorithm Walkthrough

Each thread takes a query point

S 2 % % 3 P e P
© 0060 O © %0

4 65 0 ¢

o

o ©2 oo
7 8 9
o ©
o
11 ETH:zurich

|gL October 20, 2020 Lixin Xue

Algorithm Walkthrough

Each thread takes a query point

R et
©o 0600 % 2o
N ; 95 ©°
o)
@ o 00
7 g 9
P (4]
(b
11 ETH:zurich

|gL October 20, 2020 Lixin Xue

Algorithm Walkthrough

Each thread takes a query point

ERN N I
e 0 o0 % 2o
M'\ 395 ©°
@ o 00
7 e80 9
(b
11 ETH:zurich

|gL October 20, 2020 Lixin Xue

Algorithm Walkthrough

Each thread takes a query point

1 2 3
SEEE R el
e o0 \
4 5 \@ 6
o O
(7] ° 00
. 7 8 9
Sort the query points o ©
(b

|qL October 20, 2020 Lixin Xue # 11 ETHzirich

Algoritjm Wilkthrough -

» Each thread takes a query point

A
2

» Sort the query points
O 6 6 6 0O

HBEEHEEHOHBDRD
gl

October 20, 2020 Lixin Xue

1 20 39
/9 %0

/a 95)96
o | % |leo
7\6/9 9/

ETH:zurich

_ =

e

Algoritjm Wilkthrough -

» Each thread takes a query point

-

1H203

» Sort the query points

sanuanams

gl

October 20, 2020

:

a
A EH B HKEE

_ =

YOS

6

‘},
7

00
9

11

()

ETH:zurich

Algoritjm Wilkthrough -

» Each thread takes a query point

e

_ =

SRS ! /fe‘\?
: /4/6 ; %y
A HEHEEBHAHME \Qoe\g/ee
7~ 8 9
» Sort the query points o © /
(b

Lixin Xue # 11 E'HZUI’iCh

Overall Performance

At least an order of magnitude speedup

H Series1 M Series2

|qL October 20, 2020 Lixin Xue # 12 ETH-urich

Overiiad ILreakdown

e

» Grid construction and sorting are cheap

mSeries1 ®Series2 mSeries3

@ |qL October 20, 2020 Lixin Xue # 13 E'H ZU F/Ch

Sorting Query Points

Sorting query points is important

m Series1 M Series2

1
0.8
£
i 0.6
3]
=
i)
& 0.4
(]
o
0' I I I
1 2 3 4

|qL October 20, 2020 Lixin Xue # 14 ETH-urich

N

o

How to Choose Grid Size

Let search radius be the multiple of grid size

e Series| emmmmSeries? Series3 emmmmSeries4

w A
N o >

Normalized Time
¢ : N
U = U1 NN Ul w U

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35
Search Radius - Grid Size Ratio

—_

o
o

|qL October 20, 2020 Lixin Xue # 15 ETHz(irich

Impact of batch size N

Runtime grows linear with N

ratio
O N N O 00 O
|
\\
1

= Armadillo Buddha e===Dragon Random

|qL October 20, 2020 Lixin Xue # 16 ETH-urich

Impact of neighbors K

Code optimized for small K

12.9
10.9
8.9
6.9
4.9
2.9
0.9

ratio

fe)\

K

L —

-

12 3 456 7 8 91011121314151617 1819202122 2324252627 28 29 30 31 32

K

e Armadillo ===Buddha

October 20, 2020

Lixin Xue

Dragon e==Random

ETH:zurich

Next Steps

Support any dimensions

E.g. faster graph construction in dynamic
graph CNN

(Approximate) KNN with uniform grid
Setting proper search radius is not trivial

fe)\ ETHzurich

Summary

Fixed Radius Nearest Neighbor Search

Fast, General, Easy to use

Publicly available at
https://github.com/Ixxue/FRNN

fe)\ ETHzurich

https://github.com/lxxue/FRNN

Thank You

[e]\ ETH

Eidgendssische Technische Hochschule Ziirich
INTERACTIVE GEOMETRY LAB Swiss Federal Institute of Technology Zurich

