
OPTIMIZATIONS OF THE BALL ARITHMETIC

Tiancheng Chen, Ran Liao, Yunxin Sun, Lixin Xue

Department of Computer Science
ETH Zurich, Switzerland

ABSTRACT

In scientific computing, there’s a growing demand for high
precision computing in order to retrieve the most accurate
result. However, the common single-precision (float) and
double-precision (double) floating-point numbers available
in most prevalent high-level programming languages are lim-
ited in precision. They only provide 24 or 53 bits of man-
tissa respectively. In this project, we designed and imple-
mented an efficient library for arbitrary-precision ball arith-
metic. We carry out many optimizations on the crucial part
of the big integer addition and multiplication, achieving 60%
of peak performance for the big integer multiplication. We
also optimize the sum of multiple big integers and vector
addition for balls. Besides, we optimize the high-precision
quad-double floating-point arithmetic and achieve the theo-
retical peak performance.

1. INTRODUCTION

High precision floating point number arithmetic is one of
the most common computations in every field of science and
engineering. The midpoint-radius representation for ball
arithmetic allows for efficient and rigorous high-precision
numerical evaluation with error bounds. As such, it can be
used in rounding error analysis, tolerance analysis, fuzzy
interval arithmetic, and computer-assisted proof [1]. Ball
arithmetic is about twice as fast as interval arithmetic and
uses half as much space [1]. Therefore, it is also widely
used in the scientific computing and engineering fields. The
correctness and efficiency of ball arithmetic are of great im-
portance, as ball arithmetic is the most basic operations in
many scientific computing and engineering applications.

However, implementing an efficient library of ball arith-
metic is challenging. First, the algorithms for different op-
erations vary a lot so there is no uniform way to perform
the optimization. Second, the dependency between instruc-
tions, such as the carry bit in the integer addition, makes
it hard to perform vectorization and utilize the instruction
level dependency. Third, the support for arbitrary precision
leads to constant memory allocation, copy, and deallocation,
which are quite expensive.

Contribution. In this project, we first implement func-
tions for arbitrary precision integer operations. On top of
that, we build arbitrary-precision floating-point operations.
With these operations available, we implement arbitrary pre-
cision ball arithmetic.

We carry out various optimizations for the big integer
addition and multiplication, finding out the bottleneck for
addition and reaching a 16 times speedup for multiplication.
We implement and optimize two new operations of great
use: the sum of multiple big integers and the vector addition
of two ball arrays. Moreover, we optimize the quad-double
arithmetic and get decent results.

Related work. Arb [1] is a sophisticated C library that
implements many complicated ball arithmetic operations.
However, it is built on other arbitrary-precision integer arith-
metic and floating-point arithmetic like GMP[2] and MPFR[3],
which are heavy and error-prone. Instead, we build our own
functions for arbitrary-precision integer and floating-point
operations necessary for simple ball arithmetic operations
like addition, multiplication, and division. We also support
fixed high precision operations to reduce memory accesses.
QD[4] is a library using the unevaluated sum of four IEEE
double-precision numbers called quad-double to represent
a number with at least 212 bits of significand. It imple-
ments four basic operations and various algebraic and tran-
scendental operations for quad-double numbers. We build
our fixed-precision ball arithmetic on top of this library and
perform additional optimizations.

2. BACKGROUND ON THE ALGORITHM

In this section, we first introduce the representations and
algorithms for ball arithmetic and quad-double arithmetic.
Then we do an analysis on the cost of different operations
in this arithmetic.

Ball Arithmetic Representation. As the other name of
ball arithmetic, midpoint-radius arithmetic, suggests, a real
number in ball arithmetic is represented by a midpoint m
and its radius r, both of which are floating-point numbers
and represent an interval [m± r]. In arbitrary precision ball
arithmetic, the midpoint m is tracked to full precision and
a common fixed precision floating number suffices for the

radius r.

We implement the ball with an arbitrary precision floating-
point number as midpoint and a double-precision floating
number as radius. In the arbitrary precision floating-point
number, the mantissa is implemented as an arbitrary preci-
sion integer, while the exponent is represented by a 64-bit
integer.

Ball Arithmetic Operations. The rules for the four ba-
sic operations of ball arithmetic is defined as follow: addi-
tion: [a± r]+ [b± s] = [a+ b, r+ s] (similarly for subtrac-
tion); multiplication: [a ± r] × [b ± s] = [a × b,|a× s| +
|b× r|+r×s]; division: [a±r]÷ [b±s] = [a÷ b,|a÷ b|+
|a÷ b÷ b× s|+|r ÷ b|+|r × s÷ b÷ b|]. Here the compu-
tation for the midpoints is full precision, while the compu-
tation for radii is only in double precision, where the arbi-
trary precision floating point numbers are first converted to
double-precision and then being computed with other double-
precision floating numbers. Therefore, the basic operations
for ball arithmetic reduce to the basic operations of arbitrary-
precision floating-point numbers, which can be implemented
with the basic operations of the arbitrary-precision integers
using the mantissa-exponent representation.

Big Integer Arithmetic. The naive algorithms for the
addition and the multiplication of two n-digit numbers re-
quires a number of elementary operations proportional to
n and n2 respectively. The divide-and-conquer Karatsuba
algorithm[5] reduces the asymptotic complexity to O(nlog2 3).
We implement the arbitrary-precision division based on New-
ton–Raphson division [6]. The high-level idea is to choose
an appropriate initial value, and then iterate to certain times
based on the required precision.

Quad-double Arithmetic. A quad-double number uti-
lizes the mantissa of four IEEE doubles precision numbers
to represent a number with at least 212-bit precision, as the
length of the mantissa of a double is 53 bits. Each dou-
ble represents at least 53-bit precision of the quad-double
number, and the sum of four doubles is the actual value of
the number. The four basic operations in quad-double arith-
metic can be reduced to the additions and multiplications of
double-precision numbers and one re-normalization opera-
tion in the end[4].

Cost Analysis. For the ball arithmetic we build from
scratch, the four basic operations consist of operations in the
big integer with only a few floating-point computations for
radii. Therefore, we use the number of integer operations
per cycle (including shifting and logical operations) as the
metric for the performance evaluation of the ball arithmetic
operations. For the quad-double implementation, as all the
operations are basic arithmetic operations of doubles, we
use FLOPs as the metric.

Fig. 1. Left: profiling for the multiplication of two balls.
Right: profiling for the division of two balls.

3. METHOD

In this section, we first introduce the data structure we use
to store the ball. Then we present the optimizations we have
done to speed up several operations. We also add some new
operations that are common in usage and easy to optimize.
Besides, we try to optimize the quad-double arithmetic.

Data Structure. The big integer is implemented as a
struct of an array of unsigned long integers, a sign field,
a size field, and a capacity field. The size and the capac-
ity fields are similar to those of the ‘std::vector‘ in the C++
standard template library. One specific thing of our design
is to use each 64-bit unsigned long integer to store 32-bit un-
signed integer only, thus we can use additions and multipli-
cations of unsigned long without worrying about type con-
version and overflow in some steps. This is crucial for our
SIMD vectorization in big integer multiplication, which will
be explained later. With such a design, the absolute value of
the big integer is just the concatenation of the lower 32bits
of all unsigned 64-bit integer in the array. The big float is
implemented with a big integer as the mantissa and a 64-bit
signed integer as the exponent. The ball is composed of a
big float as midpoint and a double as radius.

Profiling. We implement the library in C based on an
open-source big integer library[7] that only implements the
addition and the subtraction operations. We add many more
functions as we need and build the ball arithmetic library on
top of it. We use this modular implementation as the base-
line. We first profile the naive implementation to find out
the bottleneck of the basic operations in ball arithmetic. We
use perf to find the bottleneck of the basic operations for
ball arithmetic. Figure 3 shows the decomposition of run-
time (measured in CPU cycles) of the multiplication and the
division operations of the two balls. As shown in the charts,
the memory allocation, deallocation, and copy take a large
part of the time for both operations. The multiplication and
the addition of big integers are also quite time-consuming.
Therefore, we mainly focus on these three parts to optimize
our library.

Memory Optimization. Due to the support for arbi-
trary precision, we need to allocate and copy memory once
the current storage is not enough to store the result, which

is quite common in multiplication. This is very expensive
as shown in the profiling section. One way is to allocate
enough space in the very beginning. However, we have no
prior on the typical usage of this library, thus cannot preallo-
cate enough memory in the first place. So one optimization
we have done is to provide the fixed precision version of all
the functions, where only a fixed number of the most sig-
nificant bits are kept and all other bits are discarded (treated
as 0). With this simplification, now we can significantly re-
duce the memory operations.

Besides, there are some unnecessary memory operations
in the baseline due to our modular implementation. We re-
move all these unnecessary memory accesses by inline the
functions, which also reduce the cost of function calls and
enable the compiler to do further optimization.

Big Integer Addition. We implement the baseline in a
straightforward way by adding the unsigned integers start-
ing from lower bits and then propagate the carry bit to the
next unsigned integer addition. In this way, there are 4n op-
erations for the addition of two big integers of size n: 2n
integer additions for the operands and the carry, n logical
and operations to take the lower 32 bits of the sum, and n
shift operations to get the carry.

The optimization for the addition is hard for two rea-
sons: first, all the data are visited once, all the cache misses
are compulsory misses, where we cannot do much about it;
second, the existence of the carry bit leads to the depen-
dency between instructions, make it hard to vectorize the
code. Still. we try several methods to optimize it and it
indeed boosts the performance a little bit.

The first thing we do is to inline all the function calls in
the addition function, where there are various cases such as
operands being zero and different signs of operands. This
reduces the function call overhead and enables the compiler
to do further optimization.

The second thing we do is to use addcarryx u32,
the addition with carry intrinsic from Intel Intrinsics to speed
up the performance. This reduces the number of integer in-
structions to n only as we now can use the carry bit in the
register to store the carry information. Since the gap of this
intrinsic is 0.5, meaning we can issue two of such instruc-
tions every CPU cycle, we split the two operands into halves
and add them independently to further enable instruction-
level parallelism. We propagate the carry bit from the place
where we cut it to make the result correct, thus having a
maximum overhead of n/2 instructions.

The last thing we try is to ignore the carry bit for now
and use mm256 add epi64 intrinsic to add 4 numbers
simultaneously. After all the individual additions are done,
we extract the carry bits one by one and further propagate
them.

Big Integer Multiplication. We implement our base-
line with the quadratic ’primary school’ algorithm. We im-

plement a function that can multiply a single digit with an-
other entire operand. Then we invoke this function n times
and add their output together. This baseline implementation
is simple, correct but quite inefficient. Too much unnec-
essary memory copy and allocation makes its performance
suffer.

Then we fix the precision to a specific value and inline
everything we can, we use a 2-level-nested for loop to do the
computation and thus remove unnecessary time-consuming
memory copy and allocation process. We also use scalar
replacement to reduce unnecessary computation.

To further improve performance, we try to increase instruction-
level parallelism. In the schoolbook long multiplication al-
gorithm, we multiply each digit in one operand with the
other operand. It’s clear that each digit can do this pro-
cess in parallel. Their results are independent of each other.
So we unroll the outer for-loop a little bit and compute 4
digits at a time. This trick is enabled by our design of the
data structure: we use only 32 bits of the entire 64 bits of an
unsigned long integer. Therefore, we can forget about the
overflow in the multiplication for one step.

To boost performance even further, we use Intel vec-
tor intrinsics. We use mm256 mul epu32 to multiply the
lower 32 bits of input data and get a 64 bits output. We use
mm256 add epi64 for additions, mm256 and si256 for and

operations and mm256 srli epi64 for shift operations. To-
gether with loop unrolling, this SIMD optimization gives us
a great performance boost.

Another direction we try is to reduce the number of in-
teger operations in the multiplication. We notice that the
propagation of the carry bit is time-consuming as it takes
3 instructions (1 and, 1 shift, 1 addition) to propagate the
carry bit one step forward. We need to do this immediately
after the multiplication as the product of two 32 bits un-
signed integers will be 64 bits long, where there is no space
to store the additional carry bit if we add two 64 bits long in-
tegers together. If we don’t propagate the carry right away,
the result could be wrong.

We try to reduce the number of integer operations in-
troduced in this carry propagation process by storing fewer
bits per 64 bits. If we store n bits in every 64-bit unit, the
product of two such integers will be 2n bits long in a 64-bit
container. Then we can add 264−2n of such products to-
gether without worrying about the overflow problem, being
able to do the carry propagation less frequently.

In table 1, we summarize how much we can reduce the
number of integer operations with a different number of ac-
tual bits in the 64-bit container. 0x is the version without
this particular optimization. Column #bits is the number of
bits we store in each unit. Column #bits2 is the number of
bits after multiplication. Column #add max is the number
of addition we can do before such multiplied number over-
flows. Column # add req is the number of addition we need

to enable this particular optimization. The last column is the
number of integer operations after doing this optimization.

ver #bits #bits2 #add max # add req intop

0x 32 64 0 0 5n2

1x 30 60 16 > 4 3.5n2

2x 30 60 16 > 12 2.75n2

4x 29 58 64 > 28 2.37n2

8x 29 58 64 > 60 2.18n2

Table 1. Reduced Intop

However, there is a trade-off: as we store fewer bits in
each unit, we need more units to preserve the same level
of precision. In essence, it is the trade-off between mem-
ory and computation. If a machine is compute-bound in the
multiplication, it would help to further reduce the runtime.

Lastly, we try to optimize the multiplication for a spe-
cific 256-bit precision. We unroll all loops and rearrange
them to provide the most instruction-level parallelism we
can possibly have.

Sum of Big Integers. Suppose we want to compute the
sum of k balls, our baseline implementation will invoke ball
addition function k−1 times, leading to an invocation of big
integer addition k times. For each call of big integer addi-
tion, we will do the carry propagation for the entire array.
However, if we know will add multiple big integers before-
hand, we can sum up the numbers of all operands in each
position, and then do a carry propagation for only one time,
instead of k − 1 times. In this way, we not only save the
number of operations needed but also make SIMD using
vector intrinsics possible.

Vector Operations for Balls. We also implement vec-
tor operations of the ball arithmetic in our library. More
specifically, a n dimension vector is made up of n balls, and
each ball has its own radius and centre. The vector oper-
ation is defined as operating on the elements of the same
index of the operand vectors, and store the result in the re-
sult vector. We only implement the vector addition and its
optimizations in this project, but other operations should be
similar and straightforward.

The straightforward idea is to just perform n ball arith-
metic add for two n dimension vectors. This implies n ball
arithmetic add and servers as our baseline. However, there
is no dependency between each element, and we could ac-
tually put every four elements in the same register and use
vector intrinsics to increase parallelism. We use 64-bit un-
signed long to store 32-bit unsigned integers and each SIMD
slot has 256 bits in total, so the maximal theoretical speedup
is 4x for this application.

Vecotr Operations for Quad-doubles. For the quad-
double representation of high precision floating point num-
bers, we define a data structure, quad-double array, which

consists of n quad-doubles, to enable vector operations. We
mainly optimize the vector addition and the vector multipli-
cation on quad-double arrays. Again, both the addition and
the multiplication in the quad-double arithmetic are one-
pass algorithms, so there is no memory reused and no much
space for locality optimizations.

First, we do one-level inline in simple functions (con-
sisting of several double operations), though this by itself
has no effect on the runtime.

Second, we vectorize the addition and the multiplication
using AVX2 in a way that the functions called in addition
and multiplication are vectorized. We implement the quad-
double array as 4 double arrays of size n, the ith array rep-
resents the ith doubles of n quad-doubles. By our design of
the data structure, we can retrieve doubles at a specific posi-
tion of 4 quad-doubles at the same time. Since the memory
allocation is 32B aligned, aligned load and store can be uti-
lized.

Third, we inlined all the functions called except for re-
normalization, so that we can perform loop unrolling to achieve
further speedup. The re-normalization is the last step of the
operation, so it does not affect the ILP of vectorization and
unrolling.

We do not vectorize or inline the re-normalization part
based on the following reasons. One way to vectorize the re-
normalization function is to calculate the result in all branches
and use a computed mask to pick the result. The original
version needs to execute 9 floating-point operations while
the vectorized version needs to execute 40 floating-point op-
erations excluding the computation of mask and assembling
and disassembling of ymm registers, as every branch has to
be considered. Therefore, we decide not to vectorize it even
though the vectorized version can also be inlined to gain
more speedup. Also, we used perf to measure the branch
misprediction rate of the original version. When the data
is smaller than 8MB, the branch miss rate is about 0.4%,
which means the branch prediction is not a bottleneck here.

We also try some other optimizations. One is reordering
instructions by hand to decrease data dependency, and the
other is renaming variables to resolve WAW, WAR condi-
tions. However, we gain no speedup and it is possible that
the compiler has done all of these.

4. EXPERIMENTAL RESULTS

In this section, we display the experiment results of all op-
timization methods mentioned in the previous section.

Experimental setup. We use the notebook Intel i5-
6300HQ CPU @ 2.30GHz for the benchmarking. The L1,
L2, L3 cache sizes are 32KB, 256KB, and 6MB respec-
tively. We mainly use gcc 7.5.0 with -O3 flag.

Big Integer Additions. Figure 2 is the speedup plot
for the big integer addition. We use the speedup plot in-

stead of the performance plot since the number of integer
operations differs significantly between methods and even
data-dependent in some methods. For a fair comparison,
we preallocate enough space for all the operands and the re-
sults to remove the influence of memory allocation, copy,
and deallocation. We measure the performance in the cold
cache scenario. The black line is the baseline implementa-
tion mentioned in the previous section. The blue line is the
inline version of where we inline all function written by us.
The red line is a version using the addition with carry intrin-
sic to significantly reduce the number of integer instructions
needed. The orange line is a modified version of the previ-
ous method using intrinsics by splitting the operands into
halves to enable ILP. The cyan line is the method where we
ignore the carry bit first to use SIMD instructions and later
propagate the carry bits.

28 29 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
Input Size / Precision [x 32 bits]

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

S
pe

ed
up

L1 Cache L2 Cache L3 Cache

Intel® Core™ i5-6300HQ CPU @ 2.30GHz (Skylake)
L1: 32KB, L2: 256KB, L3: 6MB
Compiler: g++ 7.5.0
Flag:-march=native -O3

baseline
inline
intrinsics
intrinsics_ILP
intrinsics_vectorized

Fig. 2. Speedup for Big Integer Addition

From the figure 2, we can see that the optimizations
we have done do not help much. This is reasonable as
the operational intensity is O(1) for all these methods. For
the intrinsics vectorized version, visiting the ar-
ray for a second time makes the performance degrade a lot.
The intrinsics ILP version could possibly visit part of
the array for a second time to propagate the carry bit, so it is
also slow when the operands cannot fit in the L1 cache. The
problem with the intrinsics version (both the red line and
the orange line) is that gcc does not works well with the
addcarryx u32. It cannot generate a decent assembly

code for this intrinsic after the examination of the assembly
code. We try to compile the code with clang and icc,
but it still cannot generate the ADOX instruction we desire.
We could reduce the data transferred by using more bits in
the 64-bit container. However, for the optimizations in the
big integer multiplication, we have to use the current data
structure to avoid overflow in multiplications.

Big Integer Multiplication. Figure 3 is the performance
plot for multiplication. The black line at the bottom is the
baseline implementation we mentioned in the beginning.
The blue one is the fixed-precision and inlined implemen-
tation. The purple and the yellow line is the most optimized
version we have. The speedup gain from vector intrinsics.

Basically, the more we unroll, the more instruction-level
parallelism we have, the higher the performance. And the
red dot in the left bottom corner represents the performance
that we optimized specifically for 256 bits precision. It’s
around 1.25 integer operations per cycle, a little bit higher
than all other implementation in this particular precision.
From the baseline to the most optimized version, we have
approximate 16x speedup. In our test machine, there are 3
ports that can issue integer vector instructions in each cycle.
Therefore, the theoretical maximum performance should be
12 integer operations per cycle considering vector instruc-
tions. We achieve around 60% - 70% of theoretical maxi-
mum performance.

28 29 210 211 212 213 214 215 216 217 218 219 220 221

Input Size / Precision [bit]

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5
7.0
7.5
8.0
8.5
9.0
9.5

10.0
10.5
11.0
11.5
12.0
12.5
13.0
13.5

P
er

fo
rm

an
ce

 [I
nt

op
s/

C
yc

le
]

mul_quad_double

L1 Cache L2 Cache

Theoretical Maximum Performance

 1

6x
 S

pe
ed

up

Intel® Core i5-6300HQ CPU @ 2.30GHz (Skylake)
L1: 32KB, L2: 256KB, L3: 6MB
Compiler: gcc 7.5.0
Flag:-march=native -O3

mul_naive
mul_fix_precision
mul_fix_precision_unroll
mul_fix_precision_1x_unroll
mul_fix_precision_2x_unroll
mul_fix_precision_4x_unroll
mul_fix_precision_8x_unroll
mul_fix_precision_12x_unroll
mul_fix_precision_16x_unroll

Fig. 3. Performance Plot for Multiplication

Figure 4 is the speedup plot after we apply the reducing
integer operations trick on the most optimized implemen-
tation. Most of the data points fall below 1.0, which indi-
cating this optimization doesn’t work. One possible reason
behind this could be the memory bound. Though we in-
deed reduce the number of integer operations, we still need
to access the output array repeatedly. There’re lots of load
(mm256 loadu si256) and store (mm256 storeu si256) in-
structions. This part becomes the bottleneck and limits the
performance.

Sum of Big Integers. Figure 5 shows doing the sum
directly can be a lot faster than doing addition repeatedly.
The dark blue line sum 4 represents the sum of 4 balls. The
dark red line sum 8 represents the sum of 8 balls, and so
on. Through this optimization, we can achieve as high as 4x
speedup.

Figure 6 is the performance plot after we apply the vec-
tor intrinsics optimization to the best previous implemen-
tation. It can help to achieve another 1.5x speedup when
the working data is small enough to fit into the L1 cache.
When the working data is larger than caches, the perfor-
mance drops significantly. Data movement becomes a bot-
tleneck.

28 29 210 211 212 213 214 215 216 217 218 219 220 221

Input Size / Precision [bit]

0.7

0.8

0.9

1.0

1.1

S
pe

ed
up

L1 Cache L2 Cache

Intel® Core i5-6300HQ CPU @ 2.30GHz (Skylake)
L1: 32KB, L2: 256KB, L3: 6MB
Compiler: clang 12.0.0
Flag:-march=native -O3

mul_fix_precision_16x_unroll
mul_fix_precision_16x_unroll_reduce_intop_1x
mul_fix_precision_16x_unroll_reduce_intop_2x
mul_fix_precision_16x_unroll_reduce_intop_4x
mul_fix_precision_16x_unroll_reduce_intop_8x

Fig. 4. Speedup for Reducing # Intop

28 29 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224

Input Size / Precision [bit]

1.0

1.5

2.0

2.5

3.0

3.5

4.0

S
pe

ed
up

Intel® Core i5-6300HQ CPU @ 2.30GHz (Skylake)
L1: 32KB, L2: 256KB, L3: 6MB
Compiler: gcc 7.5.0
Flag:-march=native -O3

add
sum_4
sum_8
sum_12
sum_16

Fig. 5. Speedup for Sum of Big Integers

Vector Operations for Balls. Figure 7 shows the rel-
ative speedup of performing vector add using SIMD com-
pared with the baseline. The baseline is just computing the
ball arithmetic of every vector element in a straightforward
way. We conduct the experiment in 4-element vectors, 8-
element vectors, and 16-element vectors. The theoretical
max speedup is 4x because one SIMD slot can hold four
unsigned long integers of our implementation. In practice,
we could see that when the data size fits into the L1 cache,
the speedup is almost 4 times. When the working set size is
larger than the L1 cache size, the speedup gets smaller and
smaller because there’s some overhead in the memory stack
to move the data back and forth.

Quad-double Addition. The meaning of x-axis: quad-
double array size n means two quad-double arrays, each of
which has n quad-doubles. And operation performed on
quad-double at the same index.

The result of quad-double multiplication is similar to ad-
dition, so only addition will be shown here for clarity.

28 29 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224

Input Size / Precision [bit]

0.5

1.0

1.5

2.0

2.5

3.0

P
er

fo
rm

an
ce

 [I
nt

op
/C

yc
le

]

L1 Cache L2 Cache L3 Cache

1.

4x
 S

pe
ed

up

Intel® Core i5-6300HQ CPU @ 2.30GHz (Skylake)
L1: 32KB, L2: 256KB, L3: 6MB
Compiler: gcc 7.5.0
Flag:-march=native -O3

sum_8
sum_8_unroll_1x
sum_8_unroll_2x

Fig. 6. Speedup for Sum of Big Integers Using Vector In-
trinsics

28 29 210 211 212 213 214 215 216 217 218 219 220 221

Input Size / Precision [bit]

1.5

2.0

2.5

3.0

3.5

S
pe

ed
up

L1 Cache L2 Cache

Intel® Core i5-6300HQ CPU @ 2.30GHz (Skylake)
L1: 32KB, L2: 256KB, L3: 6MB
Compiler: gcc 7.5.0
Flag:-march=native -O3

4-element vector
8-element vector
16-element vector

Fig. 7. Speedup for Vector add

Figure 8 shows the performance of quad-double addi-
tion. The black line is the naive implementation. add inplace
refers to the inplace version. add inplace vec refers to
SIMD and inlined version. The rest are versions of different
loop unrolling factor. From the result, the version with 6x
loop unrolling (24 pairs of quad-doubles in a loop because
of SIMD) has the highest performance with a large data size,
which is about 5.5x speedup. And peak performance is 4
FLOPs/cycle. The performance does not decrease much af-
ter data size exceeds the L3 cache, which means memory
bandwidth is not the bottleneck.

Here we compare the quad-double arithmetic with big
integer arithmetic. The big integer precision is set to 23,
256 bits that are closest to > 212 bits of quad-double. Op-
timized big integer requires 258 cycles to compute. Opti-
mized quad-double requires only 40 cycles on average with
an input array size of 213.

It’s actually not fair to compare the both, because some

23 24 25 26 27 28 29 210 211 212 213 214 215 216 217

Quad-double array size

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Pe
rfo

rm
an

ce
 [F

LO
PS

/c
yc

le
]

L1 Cache L2 Cache L3 Cache

50% Theoretical Maximum Performance (no FMA)

Intel® Core i5-6300HQ CPU @ 2.30GHz (Skylake)
L1: 32KB, L2: 256KB, L3: 6MB
Compiler: gcc 7.5.0
Flag:-march=native -O3

add_naive
add_inplace
add_inplace_vec
add_inplace_vec_2x_unroll
add_inplace_vec_3x_unroll
add_inplace_vec_4x_unroll
add_inplace_vec_6x_unroll
add_inplace_vec_8x_unroll

Fig. 8. Performance of quad-double batch add

facts as follows. First, quad-double is based on double op-
erations while big integer is based on integer arithmetic.
Second, the algorithm for quad-double is well-designed for
quad-double and is not trivially portable to n-double, while
the algorithm behind the big integer is heuristic and portable
to arbitrary precision. Third, quad-double is optimized for
batch operation, while big integer is not.

23 24 25 26 27 28 29 210 211 212 213 214 215 216 217

Quad-double array size

2

4

6

8

10

12

Pe
rfo

rm
an

ce
 [F

LO
PS

/c
yc

le
] L1 Cache L2 Cache L3 Cache

75% Theoretical Maximum Performance (with FMA)

Intel® Core i5-6300HQ CPU @ 2.30GHz (Skylake)
L1: 32KB, L2: 256KB, L3: 6MB
Compiler: gcc 7.5.0
Flag:-march=native -O3

add_naive
add_inplace
add_inplace_vec
add_inplace_vec_2x_unroll
add_inplace_vec_3x_unroll
add_inplace_vec_4x_unroll
add_inplace_vec_6x_unroll
add_inplace_vec_8x_unroll

Fig. 9. Performance of quad-double batch add (overhead
subtracted)

We also tested a version with only memory allocation
and re-normalization, to see if the main part of the function
is optimized to our best. Subtracting cycles of overhead
from original data, the result is shown in figure 9. The high-
est speedup is around 8x to 10x. The peak performance is
around 10 to 12 FLOPs/cycle which is between the theo-
retical peak without FMA (8 FLOPs/cycle) and with FMA
(16 FLOPs/cycle). The number of FMA operations in the
function is fixed and only consist of a small portion. So this
figure indicates we have nearly achieved peak performance.

5. CONCLUSIONS

In arbitrary precision ball arithmetic, the most crucial part
for efficiency is the big integer addition and the big integer
multiplication. The big integer addition is memory bound
and there is no much space for memory optimization as
there is no temporal locality on the input. We try several op-
timizations to reduce the number of integer operations and
to enable ILP, but the gain in performance is limited. For the
big integer multiplication, it benefits from the design of the
data structure: we use an array of 64 bits unsigned long to
store the integer, where the upper 32 bits are left as empty
to store the temporary results in multiplication. With this
design, we can vectorize the nested for-loop in the multi-
plication. With loop unrolling and scalar replacement, we
achieve a 16 times speedup and reach about 60% of the the-
oretical max performance. We also tried to store fewer bits
per 64 bits to reduce the number of integer operations. How-
ever, this attempt does not give us a boost in performance
due to the memory-computation tradeoff.

In addition, we implement several new operations use-
ful and easy to optimize. The first is the sum of multiple big
integers, which will naturally occur when we sum up mul-
tiple balls at one time. The other operation we implement
is the vector addition for balls, where we add two arrays of
balls. When the data fits in the L1 cache, we achieve desired
speedup for these two new operations.

We also try to optimize the quad-double representation
of the high precision floating-point arithmetic. With inline,
vectorization and loop unrolling, we achieve the peak per-
formance of 4 floating-point operations per cycle.

6. CONTRIBUTIONS OF TEAM MEMBERS

Tiancheng Chen. Worked with Yunxin on float and ball
arithmetic implementation. Focused on addition, multipli-
cation and casting between double and our BigFloat. Also
implemented optimization of quad-double batch addition and
multiplication with function inlining and SIMD. Tested and
benchmarked the performance and run time. Analysed based
on the result.

Ran Liao. Focused on multiplication part and the sum
of big integers part, including using SIMD instruction, re-
ducing integer operation trick, 256 bits multiplication opti-
mization and test their performance/runtime.

Yunxin Sun. Worked with Tiancheng on float and ball
arithmetic implementation. Focused on the division part.
Also implemented a new data operation, vector for ball arith-
metics. Used SIMD to parallelize the vector operation, and
tested the performance/runtime.

Lixin Xue. Worked on the big integer arithmetic imple-
mentations and optimizations. Focused on the optimization
of big integer additions. Also responsible for the profiling

part of the library.

7. REFERENCES

[1] Fredrik Johansson, “Arb-a c library for arbitrary-
precision ball arithmetic,” 2018.

[2] The GMP development team, “Gmp: The gnu multiple
precision arithmetic library,” http://gmplib.org.

[3] Laurent Fousse, Guillaume Hanrot, Vincent Lefèvre,
Patrick Pélissier, and Paul Zimmermann, “Mpfr: A
multiple-precision binary floating-point library with
correct rounding,” ACM Trans. Math. Softw., vol. 33,
no. 2, pp. 13–es, June 2007.

[4] Yozo Hida, Xiaoye S Li, and David H Bailey, “Li-
brary for double-double and quad-double arithmetic,”
NERSC Division, Lawrence Berkeley National Labora-
tory, p. 19, 2007.

[5] A. Karatsuba and Yu. Ofman, “Multiplication of many-
digital numbers by automatic computers,” in Proceed-
ings of the USSR Academy of Sciences, 1962, vol. 145,
p. 293–294.

[6] Liang-Kai Wang and Michael J Schulte, “Decimal
floating-point division using newton-raphson iteration,”
in Proceedings. 15th IEEE International Conference
on Application-Specific Systems, Architectures and Pro-
cessors, 2004. IEEE, 2004, pp. 84–95.

[7] Andre Azevedo Pinto, “Ansi c biginteger,”
https://github.com/andreazevedo/biginteger.

