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Abstract

Visual localization is a key component to many robotics
systems. However, it is very challenging in changing condi-
tions such as day-night or summer-winter. Based on Sparse-
to-Dense Hypercolumn Matching [12], we improve the lo-
calization accuracy by (1) performing Feature-metric PnP
given an initial estimation of the pose and (2) training on
the supervision of pixel correspondences using double mar-
gin contrastive loss and Gauss-Newton loss to generate bet-
ter feature maps. Experimental results show that Feature-
metric PnP refines pose estimation and we achieve our best
accuracy when combine it with features trained on corre-
spondences.

1. Introduction

In recent years, an increasing number of mobile robot
navigation systems, such as autonomous driving cars and
micro drones, have been deployed in large, uncontrolled,
and GPS-denied environments for disaster relief, industrial
plant inspection, cargo delivery, etc. As the key component
of those tasks, visual localization has been a significant sub-
ject for researchers. However, in changing conditions such
as day-night or summer-winter, accurately predicting the 6
DoF camera pose of a visual query with respect to a ref-
erence frame can be very challenging and remains an un-
solved problem[28].

To tackle the visual localization problem, a hierarchi-
cal approach called HFNet[25] first uses an image re-
trieval module to obtain localization candidates. Then it
establishes 2D-2D correspondences between the query im-
age and the reference candidate based on deep image fea-
tures. This approach incurs significant runtime savings and
achieves remarkable localization robustness. Germain et al.
[12] later extended it with Sparse-to-Dense Hypercolumn
Matching (S2DHM) to improve the image matching results.

However, inaccurate matches produced by S2DHM still

Figure 1. S2DHM + Feature-PnP pipeline. Based on S2DHM,
the RANSAC-PnP pose is further fed into our Feature-metric PnP
module, together with 2D-2D correspondences between query and
reference image, 2D-3D correspondences between reference im-
age and 3D world points, sparse reference hypercolumn of each
3D point, and the dense hypercolumns of query image. The out-
put is the optimized pose. Different from S2DHM, where hy-
percolumns are extracted from the VGG-16 backbone specifically
trained for image retrieval, we fine-tune VGG-16 used in S2DHM
with supervision on cross-season correspondences and extract hy-
percolumns from it.

negatively affect the localization accuracy as offsets of
a few pixels can lead to localization errors of several
meters[13]. To produce more accurate correspondences,
we propose to match keypoints’ features in two images to
further refine the estimated pose through our Feature-PnP
module. With the recently released correspondences data
between images taken in different conditions, we further
fine-tune the CNN in the S2DHM pipeline to produce deep
features more suitable for image matching and Feature-PnP.
Experiment results indicate the effectiveness in improving
localization accuracy of our Feature-PnP module and the
fine-tuned features. Figure 2 and Figure 4 demonstrate the
qualitative results of our improvements.
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Figure 2. Feature-PnP optimizes correspondences. This is one
example of finding accurate correspondences under challenging
conditions. The night-rain image has poor illumination and strong
reflection. As illustrated in (3), inliers of RANSAC-PnP are points
of maximum correlation to their corresponding keypoints in the
reference image, but they can be very inaccurate. Feature-PnP
starting points are those reprojected after RANSAC-PnP. They are
already remarkably accurate. But Feature-PnP end points are even
better, although points only move at most 1-2 pixels. In fact, very
few pixels’ moving can lead to significant changes of the pose.

2. Related Works

2.1. Visual localization methods

Many high-level robotic tasks require precise 6-DoF
poses, thus motivating the development of methods deal-
ing with visual localization problem under strong visual
changes. Visual localization methods are traditionally clas-
sified into two categories: structure-based or image-based.
[33, 27, 1, 6]

Hierarchical localization combines the two approaches
and constructs a pipeline [17, 21]. Sarlin et al. [26] pro-
posed to first localize at the map level using learned image-
wide global descriptors, and then estimate a precise pose
from 2D-3D correspondences computed in the 3D point
cloud subset provided by the returned top-ranked images
from the database in the image retrieval step. In this way,
competitive results could be obtained at low computational
costs. Since these are poorly repeatable in extreme condi-
tions, Germain et al. [12] later extended it with Sparse-to-
Dense Hypercolumn Matching (S2DHM), using an off-the-
shelf retrieval network. They perform an exhaustive search
in the counterpart image, which is implemented efficiently
by running convolutional operations on dense feature maps
with a sparse set of local hypercolumn descriptors.

2.2. Metric learning for feature matching

Metric learning aims to learn a distance metric for ef-
fective similarity measurements between input samples by
pulling similar samples closer in embedding space and
pushing dissimilar ones apart [10]. The robotics community
has developed many methods utilizing deep metric learning
to learn feature descriptors for visual localization. Meth-
ods like [8] used deep metric learning to directly learn the

feature mapping that preserves either geometric or semantic
similarity for generic correspondences.

The contrastive loss [14] is widely used in metric learn-
ing. It encourages all positive samples to be close, while
all negative samples should be separated by a certain fixed
distance. For example, von Stumberg et al. [34] used con-
trastive loss together with Gauss-Newton loss to learn deep
features. However, forcing all samples to the same fixed
distance can be quite restrictive. Schroff et al. [30] intro-
duced triplet loss, which only requires negative samples to
be farther away than any positive samples. Methods like
LFNet [23] and D2Net [11] applied triplet loss to tackle lo-
calization tasks. Hao et al. [15] pointed out that single mar-
gin contrastive loss will bias the network toward positive
image pairs during training, so they proposed double mar-
gin contrastive loss, in which a margin for positive samples
is introduced.

In deep metric learning, the sample selection strategies
play an equal or more important role than the loss, but they
are relatively less studied [36]. For the contrastive loss it is
common to select from all positive samples randomly [7].
For the triplet loss, semi-hard negative mining, first intro-
duced by FaceNet [30], is widely adopted [22, 24]. Shri-
vastava et al. [31] proposed an online hard example min-
ing algorithm for training region-based ConvNet detectors.
LFNet [23] employed a progressive mining strategy to ob-
tain the most informative patches possible, in which the se-
lected negative samples will become harder and harder as
training goes.

Estimating the camera pose could be difficult under
lighting and weather changes if the features are not robust
to visual changes. For visual feature descriptors, Schmidt
et al. [29] trained a deep neural network with the con-
trastive loss to produce viewpoint- and lighting-invariant
descriptors for localization. Wohlhart and Lepetit [35] used
CNN to compute descriptors by enforcing simple similarity
and dissimilarity constraints between the descriptors. Von
Stumberg et al. [34] proposed a Gauss-Newton loss to learn
weather invariant deep features suitable for relocalization
tracking. Dense pixel-wise features across the whole image
provide powerful representation for localization. In prac-
tice, dense features have shown to lead to better matching
results than sparse feature matching [9].

3. Method

3.1. The Sparse-to-Dense Localization

Given a query image Iq , S2DHM[12] first uses an image
retrieval module to find a reference image Ir in the dataset
which covers the same area as the query image. Specifically,
a VGG-16[32] together with NetVLAD layer[2] pretrained
for the image retrieval task is used to encode the image and
then find nearest neighbor images in the feature space.



Figure 3. Illustration of Feature-PnP. The goal is to refine the
query image pose in a unsupervised fashion by minimizing fea-
ture distance between keypoints in two images. Suppose we have
an initial pose estimation for a query image and its correspond-
ing pose-annotated reference image. The initial estimation can be
absolute pose or relative pose [R, t] with respect to the reference
image. Given 2D-3D correspondences Ki

r and P i, P i can be pro-
jected into the query image based on the initial pose. We compare
keypoints features Fq(K

q
i ) and Fr(K

r
i ) using a suitable loss func-

tion . Minimizing such loss forces matches to be adjusted so that
they have the same features, therefore refine the pose.

With high-resolution feature maps (hypercolumns) got
by interpolating and concatenating VGG features at differ-
ent layers, they obtain 2D correspondences by matching lo-
cal features in a sparse-to-dense manner. With such 2D-
2D correspondences between the query image Iq and the
reference image Ir, and the given 2D-3D correspondences
between the Ir and the world points, they get 2D-3D corre-
spondences for Iq and use the PnP algorithm in a RANSAC
scheme to get an estimation of the camera pose for the query
image Iq .

3.2. Feature-metric PnP

In challenging conditions like day-vs-night, summer-vs-
winter, the above-mentioned pipeline might produce poor
results due to bad matches. To improve the pose estimation,
we would like to utilize deep features which are invariant
to lighting, weather, and season changes to some extent. To
be more specific, we want to adjust the matches by forcing
corresponding keypoints in two images to have the same
features. In other words, we would like to minimize the
following objective function:

L(pq) =
∑
i

ρ(ei), (1)

where ρ(·) is a suitable loss function, ei is the feature dif-
ference:

ei = Fq(K
i
q)− Fr(K

i
r). (2)

The pq is the pose of the query image, Ki
· represents the

keypoint, F·(·) is the corresponding feature. Figure 3 illus-

trates the idea of Feature-PnP.
We can minimize such objective function via iterative

optimization methods, such as gradient descent, Gauss-
Newton, and Levenberge-Marquart algorithms. However,
these methods are designed to work on flat Euclidean space
RN . In the case of pose estimation where we use quaternion
or transformation matrix to represent a pose , the pose space
forms a 6D manifold embedded in a higher-dimensional Eu-
clidean space (R7 for quaternion representation and R16 for
transformation matrix representation). In this case, one step
iteration in the embedded Euclidean space usually leads to
an invalid pose. An elegant solution to this problem is to
optimize the intrinsic 6D manifold SE(3) using an expo-
nential and logarithm map. For further details, please refer
to [5].

The key step here is to obtain the jacobian of the fea-
ture error ei with regard to the pose pq so that we can use
the above mentioned iterative optimization method to get an
update of the pose. Using the chain rule, we can decompose
the gradient into three parts:

dei
dpq

=
dei
dKi

q

dKi
q

dP i

dP i

dpq
(3)

The first term on the right-hand side can be approximated
numerically by calculating the image gradient. The sec-
ond term is the gradient of the projection operator, which
projects 3D point P i

q to 2D pixel coordinate Ki
q . The third

term, which is the gradient of 3D point P i
q with regard to the

pose pq , bears an analytical solution. For briefness, please
refers to Appendix A.2 of [5] for further details.

With the computed Jacobian, we can further obtain
the gradient and Hessian matrix of the loss function with
respect to the current pose. Then we use Levenberg-
Marquardt algorithm to optimize the pose so that the total
loss L(pq) converges to a local minimum.

Based on the result of local validation, we found some
key implementation details that are useful in improving the
performance of Feature-PnP. Instead of using the widely
used Sobel filter for the image gradient, we found that
computing second order accurate central differences largely
boosts the performance. The difference between two image
gradients is that Sobel filter produces smoother gradient as
it takes the gradient of neighboring pixels into account as
well. Also, the bilinear interpolation for both image fea-
tures and image gradients are important as we are using a
relatively low resolution feature map compared to the orig-
inal image resolution. Without bilinear interpolation, we
might end up with the same feature for different pixels. We
found that the performance of Feature-PnP is relatively sta-
ble with different loss functions. We believe this is because
Feature-PnP is based on the inliers found by RANSAC-PnP,
where there are few outliers, and robust loss functions are
therefore unnecessary.



3.3. Train on correspondences

One can directly feed Feature-PnP with feature maps
trained with supervision for the task of image retrieval, for
instance, the hypercolumns extracted in S2DHM. However,
these features may offer more global rather than pixel-wise
information. Therefore, we fine-tune the VGG-16 back-
bone used in S2DHM with supervision on correspondences,
such that it explicitly learns features tailored for pixel-level
matching. The hypercolumns generated from fine-tuned
VGG-16 should be weather invariant with pixel-wise accu-
racy, serving as better inputs for Feature-PnP.

A two-stream Siamese VGG-16 network is fed with a
pair of images Ia and Ib. We extract intermediate features
Fl

a and Fl
b from the same layers as S2DHM selects for hy-

percolumn matching, where l denotes the layer to be ex-
tracted. The loss is performed on each selected intermedi-
ate feature layer. Every input image pair has known posi-
tive correspondences, N+. Positive means that a keypoint
Ka ∈ R2 in Ia and a keypoint Kb ∈ R2 in Ib correspond to
the same point in the 3D scene, otherwise they are negative
correspondences. To learn discriminative feature represen-
tation, both positive and negative correspondences have to
be considered and we use double margin contrastive loss.

The positive correspondences are ground-truth data,
while the negative correspondences, N−, are sampled dur-
ing training. Randomly sampling often yields easy sam-
ples that contribute no loss, while with the hardest sampling
the training can quickly collapse. To balance in between,
we utilize a progressive mining strategy [23] with dis-
tance constrain [37] to obtain the most informative matches.
Given positive correspondence Ka and Kb, we first ob-
tain all candidate pixels ub ∈ R2 in Ib that satisfy the
distance constrain ||Kb − ub|| > α, where α is the dis-
tance threshold. Then we sort ub by loss in increasing
order and sample randomly over the smallest M , where
M = max(5, 300e

−0.6k
10000 ) and k is the current iteration.

As training goes, we progressively mine harder and harder
samples and end up with sampling from a pool of 5 hardest
ones.

Pixel-wise double margin contrastive loss [16] (DMC)
attempts to minimize the distance between positive matches
and maximize the distance between negative matches. It is
formulated as:

Lc(Fa,Fb, l) = L+(Fa,Fb, l) + L−(Fa,Fb, l) (4)

L+(Fa,Fb, l) =
1

N+

∑
N+

max(0, Dfeat −M+)
2 (5)

L−(Fa,Fb, l) =
1

N−

∑
N−

max(0,M− −Dfeat)
2 (6)

,where Dfeat(·) is the L2 distance between features:
Dfeat = ||Fl

a(Ka) − Fl
b(Kb)||. M+ and M− denote

the margin for positive matches and negative matches re-
spectively. Conventional single margin contrastive loss in-
duces a bias towards positive matches, since they always
contribute to the final loss, while negative matches con-
tribute only when Dfeat is larger than the margin. In con-
trast, DMC loss separates margins for positive and negative
matches, resulting a more balanced update for the weights
of the network.

3.4. Gauss-Newton loss

While the DMC loss encourages the network to learn dis-
tinctive features for different identities, our final goal is to
produce features suitable for pose estimation, specifically,
Feature-PnP. Hence, Gauss-Newton (GN) loss is applied as
a regularization term. It follows the same formulation as
described in section 3.2. For detailed derivation and cal-
culation, please refer to [34]. The intuition is that when
applying a perturbation to the current solution, the network
should maximize the probability density of correct corre-
spondences. Therefore, optimizing over GN loss is analo-
gous to performing Gauss-Newton update. Applying GN
loss on multi-scale feature maps thereby forces the fea-
tures to provide a larger convergence basin for downstream
Levenberg-Marquardt optimization in Feature-PnP.

The final loss is a weighted sum of DMC loss and GN
loss performed at each feature layer. It is formulated as:

L(Fa,Fb) =
∑
l

Lc(Fa,Fb, l) + λ
∑
l

Lg(Fa,Fb, l) (7)

where Lg represents the GN loss and λ is the weighting
coefficient.

4. Experiments
4.1. Datasets

We evaluate our method on two challenging datasets:
the RobotCar Seasons dataset[28] and the Extended CMU-
Seasons dataset[28]. The RobotCar Seasons dataset uses a
subset of the images provided in the RobotCar [20] dataset.
The reference and query images were captured by cameras
mounted on a car. One traversal is used to define a reference
condition (overcast) and the reference scene representation.
Other traversals, covering different seasonal and illumina-
tion conditions, are used for the query. It contains images
taken at night times with a lot of motion blur.

The Extended CMU Seasons dataset uses a subset
of the images provided in the CMU Visual Localization
dataset[3]. It uses images taken under a single reference
condition (sunny with no foliage). For this reference con-
dition, the dataset provides a reference 3D model recon-
structed using Structure-from-Motion. In addition, query
images taken under different conditions at different loca-
tions are provided.



Both two datasets represent an autonomous driving sce-
nario, where it is necessary to localize images taken under
varying seasonal conditions against a reference scene repre-
sentation.

4.2. Training

For all training experiments, we use the AdamW opti-
mizer [19] with a learning rate of 1e-7 and a weight decay of
0.05. For the DMC loss term, we set M+ to 0.1, and M− to
1. For the GN loss term, the maximum distance of the start
point to the correct point, called the vicinity parameter, is
usually small. Here we set it to 1 pixel for all experiments.
The first term of GN loss is weighted by 1 while the sec-
ond term is weighted by 2/7. All steps of optimization take
a single image pair as input. For each pair of images, we
select 1024 positive correspondences randomly and sample
1024 negative correspondence using the progressive mining
strategy mentioned in Section 3.3. The final loss is the sum
of DMC loss and GN loss where the weighting coefficient
λ is 0.5.

4.3. Evaluation Setup

For fast iteration and hyperparameter tuning, we use ref-
erence images of the RobotCar Seasons dataset as query
images where we have ground-truth poses for local eval-
uation. Specifically, we randomly choose 500 images from
6954 reference images and use them for the query. We find
the image with the most inliers in the reference images (we
skip the exact same image) and report its pose error. We
use mean translation error, mean rotation error (in degrees),
and percentage of images in the coarse-precision, medium-
precision, and high-precision introduced in the [28] as the
evaluation metric. One thing worth mentioning is that this
local validation setup is not representative enough as both
the query images and the reference images are captured un-
der the same conditions. So tuning hyperparameters in this
setup would make our algorithm bias towards easy exam-
ples with good initial pose estimation. For the evaluation of
the real query images, we just run our algorithms over all
images and submit the result to the evaluation server1. We
use the same ratio test value for both datasets. We set the
exhaustive search factor to 0.006.

4.4. Effectiveness of Feature-Metric PnP

Following the S2DHM[12] pipeline, we simply use our
Feature-PnP module to optimize the initial pose estimation
given by the RANSAC-PnP module as indicated in Figure 1.
We evaluate our method on the RobotCar Seasons dataset
and the Extended CMU Seasons dataset. The result shown
in Table 1 suggests the effectiveness of our Feature-PnP
module, especially in the High-Precision (pose error under

1https://www.visuallocalization.net/

2.5m and 2◦). This indicates that with a good initial start-
ing point, our Feature-PnP module works well. However,
the limited improvement in the coarse precision manifests
that this Feature-PnP module barely helps when the start-
ing point is too bad. As shown in Figure 2, Feature-PnP
end points are only 0-2 pixels off from starting points. This
observation agrees with the fact that typical images and cor-
responding feature maps are extremely non-convex. Taking
derivative as stated in Section 3.2 is only valid in a vicinity
of probably 1-2 pixels, which means bad initial solution can
never converge to the correct one.

4.5. Effect of different deep image features

To train better features for image matching and our pro-
posed Feature-PnP module, we utilize the recently released
2D-2D point matches between image taken under different
conditions[18]. To train deep features with such supervi-
sion, we experiment with different contrastive/triplet loss
together with GN loss[34]. We found the DMC loss pro-
posed in [16] works best with GN loss so we use it through-
out our experiments.

The first insight of our experiments is that training purely
on correspondences produces unsatisfactory features for
image matching as shown in Table 4.5. This is reasonable
since correspondence only provides sparse constraints on
image features where most pixels rarely appear in the loss
function. Therefore, such supervision is more suitable for
a fine-tuning step when the features have been trained on
upstream tasks, e.g. the image retrieval task in our setting.

Figure 4. Feature-PnP results using different features. (3)
shows that although there is some overlapping among correspon-
dences obtained from different features, DMC loss + GN loss
produces overall the most accurate correspondences regardless of
strong visual change. DMC loss + GN loss performs better than
using only DMC loss, for that GN loss ensures larger convergence
basin for optimization in Feature-PnP. It is worth noting that orig-
inal S2DHM features are actually very robust and even better than
other two features for some keypoints.

We report localization results on 5 different features:
1) the original S2DHM[12] feature; 2) features fine-tuned
with DMC loss; 3) features fine-tuned with DMC loss and
GN loss (DMC+GN). To improve performance on the chal-
lenging night conditions, we also train features solely on



RobotCar Seasons Extended CMU Seasons
Method Day-All Night-All Urban Suburban Park

High Medium Coarse High Medium Coarse High Medium Coarse High Medium Coarse High Medium Coarse
Original + rPnP 46.1 77.5 95.1 30.1 70.2 94.5 47.2 71.5 93.3 39.3 63.8 91.5 26.0 47.5 80.2
Original + fPnP 48.0 77.9 95.1 32.3 71.1 94.5 50.6 73.9 93.5 42.6 66.0 91.7 29.0 49.7 80.4

Table 1. RANSAC-PnP’s and Feature-PnP’s performance on the two datasets. We report localization recalls in percent, for three
translation and orientation thresholds (high, medium, and coarse) as in [28]. Here ”Original” refers to using the features trained on the
image retrieval task provided by S2DHM[12].

RobotCar Seasons Day-All Night-All
Method High Medium Coarse High Medium Coarse

Train from scratch + rPnP 40.7 73.5 94.6 5.2 17.2 41.8
Fine-tune + rPnP 48.3 79.2 95.1 27.3 64.1 93.5

Train from scratch + fPnP 41.7 74.2 94.6 6.2 18.8 42.3
Fine-tune + fPnP 49.6 78.9 95.1 30.0 65.6 93.8

Table 2. Importance of pretraining. Features pretrained on the
image retrieval task as in [12] result in significantly better local-
ization results, especially in the challenging night conditions.

overcast-night correspondences in the DMC and DMC+GN
setting. The recall accuracy is summarized in Table 3.
Figure 4 shows correspondences of different features after
Feature-PnP optimization.

From the result above, we find out both DMC loss and
GN loss contribute to the improvement of the accuracy in
the Day-All setting. However, when we train features on
both day-night and day-day correspondences, the perfor-
mance on Night-All degrades. We conjecture that the im-
balance in the correspondences data is one of the reason
for the inferior result: the day-day correspondences are two
times more than the day-night correspondences. Also, an-
other reason is that it is hard to learn features invariant to
day-night lighting changes. We tried weighted loss for dif-
ferent correspondences but the result is even worse than the
uniform weight version indicated in Table 3. Only the ver-
sion trained solely on day-night correspondences gives a
boost in the Night-All condition, while with minor degra-
dation in the Day-All condition compared to the uniform
weight version. We also find that when training with only
day-night correspondences, DMC+GN boosts Feature-PnP
results on Night-All setting compared with use DMC loss
only, specially on high precision. This demonstrates that
GN loss as a regularization term works quite well for chal-
lenging conditions.

5. Conclusion

In this paper, we introduced Feature-PnP to fine-tune the
pose estimated by RANSAC-PnP. To devise features suit-
able for pose estimation, we also presented a way to train
on pixel correspondences by combining DMC loss and GN
loss. The experiments showed that the Feature-PnP gives
superior performance in terms of accuracy. Furthermore,
both DMC loss and GN loss contribute to the improvement

RobotCar Seasons Day-All Night-All
Method High Medium Coarse High Medium Coarse

Original + rPnP 46.1 77.5 95.1 30.1 70.2 94.5
DMC + rPnP 47.7 78.9 95.1 27.3 64.5 93.1
DMC + rPnP* 47.3 78.4 95.1 28.9 69.5 94.6

DMC + GN + rPnP 48.3 79.2 95.1 27.3 64.1 93.5
DMC + GN + rPnP* 47.9 77.7 95.1 29.6 69.7 94.4

Original + fPnP 48.0 77.9 95.1 32.3 71.1 94.5
DMC + fPnP 49.1 78.8 95.2 30.5 66.6 93.3
DMC + fPnP* 48.4 78.3 95.1 30.9 71.3 94.4

DMC + GN + fPnP 49.6 78.9 95.1 30.0 65.6 93.8
DMC + GN + fPnP* 48.2 78.0 95.1 33.8 71.2 94.5
Table 3. Comparison of learned features. DMC refers to original
S2DHM[12] features fine-tuned with DMC loss. DMC+GN refers
to features trained together with GN loss. Results with * refer
to features trained solely on image correspondences on overcast-
night image pairs.

of the accuracy in day conditions. Training solely on day-
night image pairs with DMC+GN loss significantly boosts
Feature-PnP results, especially on high precision. In the
future, we would like to explore new ways of training fea-
tures on correspondences, such as training with image re-
trieval tasks or regressing correspondence maps as done in
S2DNet[13].
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.1. Feature-PnP local evaluation results

To validate the effectiveness and improve the perfor-
mance of our Feature-PnP module, we evaluate it with
different image gradient operators and different loss func-
tions in the local validation setting as stated in Section 4.3.
The results are summarized in Table 4 where we use the
mean number of inliers, mean rotation error (rerror), mean
translation error (terror), and percentage of images in the
coarse-precision, medium-precision, and high-precision in-
troduced in the [28] as evaluation metrics. The results in-
dicate that using second-order accurate central differences
is crucial for the performance while different loss functions
don’t make much difference.

.2. A suspicious bug in S2DHM

There is a bug in the public S2DHM repository where
the reference image’s camera parameters (the intrinsic ma-
trix and distortion coefficients) are used for RANSAC-PnP
to estimate the pose of the query image. The correct im-
plementation should be using the query image’s camera pa-
rameters. This bug is confirmed by the author of S2DHM4.
However, with this bug fixed we find the performance on
two datasets degrades a lot, as shown in Table 5. This bug
is still puzzling us and the authors.

.3. Detailed results for all conditions

The detailed recall accuracy under different conditions
of all experiments mentioned in the paper is shown in the
Table 6 and Table 7.

4https://github.com/germain-hug/S2DHM/issues/6



sobel + sq np + cauchy np + huber np + sq sobel + cauchy sobel + huber sobel + gm np + gm
mean rPnP num inliers 571.2 571.2 571.2 571.2 571.2 571.2 571.2 571.2

mean rPnP rerror 0.177 0.177 0.177 0.177 0.177 0.177 0.177 0.177
mean rPnP terror 1.180 1.180 1.180 1.180 1.180 1.180 1.180 1.180

mean fPnP num inliers 572.0 573.3 573.3 573.3 572.0 572.0 572.0 573.3
mean fPnP rerror 0.156 0.112 0.111 0.112 0.155 0.155 0.155 0.111
mean fPnP terror 1.045 0.779 0.768 0.769 1.047 1.045 1.045 0.773
rPnP high prec 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0
fPnP high prec 13.6 24.4 25.2 25.0 13.8 13.4 13.8 24.4

rPnP medium prec 31.4 31.4 31.4 31.4 31.4 31.4 31.4 31.4
fPnP medium prec 35.0 48.2 46.8 46.8 34.6 35.0 34.6 48.0
rPnP coarse prec 99.4 99.4 99.4 99.4 99.4 99.4 99.4 99.4
fPnP coarse prec 99.6 100.0 100.0 100.0 99.6 99.6 99.6 100.0

Table 4. Local validation of Feature-PnP. sobel refers to the method using Sobel filter for image gradient while np refers to the method
using second-order accurate central differences for image gradient. sq, cauchy, huber, and gm refers to square loss, Cauchy loss, Huber
loss, and Geman-McClure loss respectively[4].

RobotCar Seasons Extended CMU Seasons
Method Day-All Night-All Urban Suburban Park

m 0.25 / 0.5 / 5 0.25 / 0.5 / 5 0.25 / 0.5 / 5 0.25 / 0.5 / 5 0.25 / 0.5 / 5
deg 2 / 5 / 10 2 / 5 / 10 2 / 5 / 10 2 / 5 / 10 2 / 5 / 10

Reference’s cam params + rPnP 46.1 / 77.5 / 95.1 30.1 / 70.2 / 94.5 47.2 / 71.5 / 93.3 39.3 / 63.8 / 91.5 26.0 / 47.5 / 80.2
Reference’s cam params + fPnP 48.0 / 77.9 / 95.1 32.3 / 71.1 / 94.5 50.6 / 73.9 / 93.5 42.6 / 66.0 / 91.7 29.0 / 49.7 / 80.4

Query’s cam params + rPnP 46.9 / 77.5 / 95.1 21.5 / 61.3 / 94.5 3.3 / 11.9 / 87.0 2.0 / 9.6 / 87.6 1.8 / 8.5 / 73.9
Query’s cam params + fPnP 48.1 / 78.0 / 95.1 22.9 / 63.7 / 94.5 33.0 / 53.5 / 90.0 26.7 / 46.8 / 88.7 17.1 / 32.9 / 75.8

Table 5. Results with different camera parameters. The result using reference images’ camera parameters is significantly better than the
one using query images’, especially on the Extended CMU Seasons dataset where the image is distorted.
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